
1

By Mikhail Ivanyushin

Multi & Single Line Mystery

These words — single-line,
multiline — both are similar in
spelling, but its are written in English
exactly: one word with a hyphen,
the second one word.
The first assumption of the presence
of two modes — single-line and
multiline — used or first or second.
But the modes are not mutually
exclusive. They mean two completely
different things, and each of its is on
or off. Single-line mode (?s) changes
the meaning of the . dot meta-
character, while multiline mode (?m)
changes the meaning of the ^ and $
anchors.

Single-line mode
When single-line mode is off (?-s), it is the
default state of GREP requests processing:
operator .+ selects all characters from
the current position to the end of the
paragraph, but the end of the paragraph is
not selected. Analogy — each paragraph in
the story is a separate line.
When single-line mode is active (?s), the
line feed character \r is also included in
the selected area. That is, all text from the
cursor point to the end of the story will be
selected. And if the cursor is not in the text,
and the frame is selected, the whole story
will be selected. It is acceptable to say that
the story turns into one line.

Multiline mode
When multiline mode is enabled (?m),
this is the default state of GREP requests
processing, ^ and $ anchors define the
beginning and end of the paragraph. The
search with the use of meta-characters ^
and $ runs in the space of the paragraph
in which the cursor is positioned. For GREP
parser the story has as many lines as there
are paragraphs.
When multiline mode is off (?-m), the
meta-characters ^ and $ are interpreted as
markers of the beginning and the end of the
story, \A and \Z respectively. The search is
performed in the space of the entire story.
The whole story is one line.

If there is no dot meta-character in the
GREP query, it does not matter which
single-line mode option is currently set.

If there are no ^ and $ meta-characters in
the GREP query, it does not matter which
multiline mode option is currently set.

2

GREP: Multi & Single Line Mystery

Two modes in one query
If the GREP query text contains dot and at
least one of the two ^ or $ characters, it is
possible to define how these modes will
interact. Obviously, there are four possible
combinations

Usage
of each
mode

The scope
of the meta-
characters

^ and $

Characters
that dot can be

(?s)(?-m) story any character

(?-s)(?-m) story any printed character

(?m)(?-s) line any printed character

(?sm) line any character

Let’s say there is the text:

1, 2, 3,¶
it’s a Christmas tree!¶
3, 2, 1,¶
Christmas is fun!¶

and try such search GREP queries .{10}$ and
^.{12}.
The search always starts at the current
cursor position.

(?s)(?-m).{10}$ The last ten characters of the
story will be selected. Since the dot works
like any character, if the last character of the
story is a line feed, it will also be included in
the selection.
(?-s)(?-m).{10}$ If the last character of the
story is not a line feed, the last ten characters
of the story will be selected. And since the
dot works as a printed character, if the last
character of the story is a line feed, then
nothing will be selected, because among
the last ten characters there is a line feed,
but \r is not included in the set of characters
covered by the dot.
(?m)(?-s).{10}$ The last ten characters of
each line will be selected. Line feed is not
included in the sample.
(?sm).{10}$ If to place the cursor at the
beginning of the text, the last ten characters
of second and fourth lines will be selected.
But if to put the cursor before tree in the
second line, the query will highlight the
exclamation mark and \r in second line and
eight symbols of third line.

For understanding
Let’s there are two paragraphs
Text¶
Word¶
Any of the requests .+ or (?-s).+ will find
the first paragraph of the Text, and then
paragraph of the Word. The samples will
contain only printed symbols, character \r
not be selected.
And if we have such GREP query (?s).+
that it will see this text so as a single line:
Text\rWord\r and this query will select all
the characters in this line.

Strings ^book, and (?m)^book
determines the search book at the
beginning of any line.
Strings list$ and (?m)list$ specify the
search list at the end of any line.
The string (?-m)^book indicates the
search book at the beginning of the
story. The string (?-m)list$ denotes
the search list at the end of the story.
Obviously, these two last queries can be
rewritten differently, making its more
understandable: \Abook and the list\Z.

3

GREP: Multi & Single Line Mystery

Why is it so? The query looks for the end of

the paragraph; finds its at the end of the

line where insertion point stands; estimates

the number of characters in front of this

end of a paragraph not only on the subject

of whether there is a right number, but

where is the current insertion point. In this

case, the insertion point falls into these ten

characters, so this line feed is not suitable.

The query looks for the next one, also

checks ten characters in front of founded

line feed, whether the current position

of the cursor falls into them. If not, they

selected.

In this example we put the cursor before

word tree. But as soon as the cursor after

exclamation mark, it falls into the space of

ten characters before the line feed, and the

query looks for the next line feed in the text.

(?s)(?-m)^.{12} Search in the story, all

characters in the text are searched. The

^ character is interpreted not only as the

beginning of the story, but also as \r, so

this query allocates first twelve characters

from the beginning of the story, and then

next sequences of twelve characters starting

with \r.

(?-s)(?-m)^.{12} Find of any printed

characters in the line. State “any printed

character” defines that a line feed character

will not be included in the selection. This

query may select in paragraph only first

twelve print characters from insertion point.

(?m)(?-s)^.{12} Search in a line, any

printed character. Twelve text characters

are searched at the beginning of each

paragraph. If the paragraph is shorter, it is

skipped.

(?sm)^.{12} Search in a line, any character.

Twelve characters are selected at the

beginning of each paragraph. If the

paragraph is shorter, a line feed and several

characters of the next paragraph will be

included in the selection.

Clarification is required
At the beginning of this article was said and
it is taken from the documentation what the
multiline mode state is enabled by default.
Is it all information about this mode?
Here is the task: find the first spaces in
the paragraphs, try this GREP query for its
solution: ^(.+?)\K\h. In InDesign 2018 &
2019 the query does not solve this task,
because it jumps over the line (In InDesign
CS6 the query works right).* I don’t know
why it so. But if we change this query:
(?m)^(.+?)\K\h then it will work right.
What is it? After all, if multiline mode is
enabled by default, the queries ^(.+?)\K\h
and (?m)^(.+?)\K\h must be executed in the
same way. However this does not happen.
My guess is that when the command
(?m) appears in GREP query, the parser
additionally changes the interpretation
of the ^ anchor. At the time of the query
processing meta-character ^ becomes not

* https://youtu.be/FEJpn3Nolw0 — it is link to video where is shown how differently processed query ^(.+?)\K\h in CS6, CC2018 and CC2019.

https://youtu.be/FEJpn3Nolw0

4

GREP: Multi & Single Line Mystery

only a marker of the beginning of the story/
paragraph, but also corresponds to \r.
Here’s how it looks in the implementation
by other requests: query \r(.+?)\K\h goes
through all the lines starting with the second,
and the query (^|\r)(.+?)\K\h works the same
way as (?m)^(.+?)\K\h. Queries (?s)^(.+?)\K\h
and (?-s)^(.+?)\K\h works right the same way
precisely. I think it is because for the duration
of the query the inclusion operators of any of
these modes will determine that the anchor ^
should be treated as \r too.
So by default multiline mode is enabled
and single-line mode is disabled, it is right.
But a lot of GREP tasks led to the reasonable
assumption that any command to work with
these modes (?m), (?-m), (?s), (?-s) forces
the parser to change the usage of the meta-
character ^. For the duration of the query
with these commands anchor ^ is not only
the beginning of the story and paragraph,
but also the equivalent of \r. In queries with
commands of these modes the operator ^
works as (^|\r).

One more example of usage
Replace flush spaces with the tabs
In the text the positions of the list are
separated by flush spaces.
A) text, numbers =FS= D) text, numbers
B) text, numbers =FS= E) text, numbers
C) text, numbers =FS= F) text, numbers
=FS= is here as symbol description of flush
space it is necessary to replace these flush
spaces with the tabs.
Query ^\u\).+\K~f will search through the
string.
And an explicit indication that multiline
mode is enabled or single-line mode is
disabled (although these states are already
by default) determines that during query
processing the story beginning/paragraph
start symbol ^ will be applied to the line
feed too.
The result is a query (?m)^\u\).+\K~f or
(?-s)^\u\).+\K~f will go through each line.

Conclusion
Of course, it is possible to give a dozen more
examples, but it is important to stop in
time. I think it is wrote enough here about
multiline and single-line modes and features
of their usage. Feel free to ask if you have
any questions, email is below.

Mikhail Ivanyushin is designer, scripter (dotextok.ru,
adobeindesign.ru), writer, blogger, sometimes interviewer
(2008, 2014), occasionally lecturer.
And always InDesign-Diver.
m.ivanyushin@gmail.com

https://dotextok.ru
http://adobeindesign.ru
www.facebook.com/longliveindesign
http://www.publish.ru/articles/200804_5184161
http://www.publish.ru/articles/201412_20013368
mailto:m.ivanyushin@gmail.com

